Galaxy Digital's Michael Novogratz makes yet another ...

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

Cryptocurrency Adoption: A Breakthrough?

Cryptocurrency Adoption: A Breakthrough?
You have probably read dozens of articles dedicated to this subject before, and likely skipped even more. So why write another one, let alone read it? The short answer is times have changed. Well, times always change. Still, the point is that we may be amidst a paradigm shift in the cryptocurrency space right now even if we don’t feel it yet.
by stealthEX
Such a fundamental change is possible due to a confluence of several factors. Some of these factors are external and therefore not related to crypto. Others are internal and represent the value-oriented nature of cryptocurrencies. It just happened that all of them got activated under specific conditions at a certain point in time, which is today, give or take.

Economic woes in a post-Covid-19 World

You wouldn’t be far from the truth if you claimed that we haven’t yet pulled through the pandemic, to begin with. Unfortunately, it only makes matters worse unless you are a cryptocurrency investor and don’t care for the rest of humanity. Anyway, the damage has been done, and nothing can change that. We are now entering the phase that is technically called “competitive devaluations” and colloquially known as currency wars.
You could also argue that if it didn’t happen at the peak of the coronavirus pandemic, it is not going to happen now. The sad truth is that we are only starting to feel the real pain. Even the deadly coronavirus doesn’t take over the body instantly, while it takes some time on the scale of a few months up to a couple years for the economic disease to spread through the fabric of society, evolve, and then erupt with inflation rates shooting through the roof, among many other nasty things. Please take your seat.
The world reserve fiat, the American dollar, is sinking like Titanic, slowly but surely. We can’t say the same about less lucky currencies, though. We won’t dwell on the Venezuelan bolivar and Zimbabwean dollar as they are altogether beyond redemption, but fiats like the Brazilian real and Russian ruble are also balancing on the brink of another landslide devaluation, which they have seen many in the past. Sharp minds in the cryptocurrency space have been telling us about this development for ages. It all looked like a remote possibility in some distant future that as we felt deep down wouldn’t have a chance to come up in our lifetime.
As it stands, we were wrong, and the events described are now starting to unfold right before our own eyes. In a strange twist of fate, large-scale cryptocurrency adoption is about to occur along with them, but not through some technical breakthroughs and innovation, or even the much-hyped DeFi, but primarily through the failure of conventional financial systems based on fiat currencies. Rest assured, the top dogs in the cryptocurrency pit are well aware of this dynamic, and they are not going to wait any longer.
Grayscale Investments, a multi-billion dollar company behind a host of cryptocurrency trust funds, started to frenziedly buy up bitcoins a couple weeks ago. All in all, it acquired over 17,000 BTC adding to its already quite impressive stash of Bitcoin, now totalling almost 450,000 coins under its management. Love it or leave it, but it amounts to 2.4% of all bitcoins mined to date, including lost, burned, or left for dead as dust in Bitcoin wallets. In essence, it means that their effective share is way higher.
But while Grayscale definitely sits at the top of the cryptocurrency investment chain, it is not the only company that went on a buying spree lately. MicroStrategy, a company largely unknown to the wider public, suddenly got religion and swapped over $400 million of its capital into 38,250 BTC. Even Barry Silbert, CEO of Grayscale, commented on this feat in his tweet.
Twitter, by StealthEX
So whenever there is a hint at price correction, someone comes out of the shadows and picks up a handful of bitcoins from the market propping up the price.
Why are they doing this? You already know the answer.

Paradigm shift

In different words, all that cryptocurrencies had to do was to last long enough until fiat started to fall apart. It does now, and paradoxically such times are also times of great opportunity, Baron Rothschild’s way. The world’s largest cryptocurrency exchange, Binance, has been pushing its cryptocurrency payment card since April when it acquired Swipe, a firm focused on crypto-to-fiat payment cards. At the time of the acquisition Swipe already supported 20 cryptocurrencies and fiat transactions in major currencies.
Binance.com, by StaelthEX
For European users the Binance card was officially made available in August, and the exchange plans to enter the US market soon. Given its dominance in the crypto arena, it wouldn’t be unreasonable to expect the surge in the cryptocurrency use as a means of payment thanks to this. It is unlikely that people would spend their precious bitcoins, but the packmaster is not the only member of the pack that Binance handles. Cryptos like Litecoin or Bitcoin Cash can easily become currencies of choice to use with Binance debit cards.
But what truly makes it a game-changer is the current turmoil in the global economic affairs which may turn out to be a once-in-a-lifetime chance for crypto to pick up where fiat currencies leave, or fail, to be exact. On the other hand, it may be a natural development after all, set in stone by the very first Bitcoin transaction and cemented for good when it got confirmed. Now things start to arrange themselves to fit their preordained layout. We have taken our time.
As cryptocurrencies are not internally linked to, or tied by, the lunatic policies of monetary authorities, that is to say, no central bank can ask or force miners to mine more bitcoins, we have the first element in place in the layout for the cryptocurrency mass adoption to occur at the most basic level. In fact, it has always been there, so we just had to wait until the two other elements arrived, even though it took longer than most of us were ready to wait.
The second required element in the grand picture of cryptocurrency adoption is the change in attitude toward wealth evaluation. So far the vast majority of people involved in crypto, including its most die-hard supporters, valued their cryptocurrency holdings in fiat terms. Without doubt, it was the US dollar, regardless of your home currency. But when fiat collapses or enters a long period of runaway inflation, people will be ready for a dramatic change in their approaches toward capital assessment as well as spending habits.
And here comes the most important part where Binance hits the nail on the head. If you are unable to effortlessly spend crypto in your everyday life, the first two components cannot trigger this change in attitude on their own. We need this third element to make use of what has existed and take advantage of what has come around. In a way, what Binance did, and what its competitors are no doubt going to do as well if they don’t want to miss out on the opportunity, appears to be the part that snugly snaps into place when we finally get there.
With Binance payment card, you can “buy the things you love with crypto”. So now the ball is in your court to support the full-scale cryptocurrency adoption coming up. Kidding aside, with fiat turning into trash by leaps and bounds all over the globe, this looks like a very enticing payment option for both the crypto purists and the unbanked. We have seen quite a few such cards in the past, but Binance seems to be adamant on making its variety really popular and actually usable. And then you can ride volatility waves to your financial benefit.
If Binance succeeds, that may herald a new era of cryptocurrency adoption, a breakthrough of sorts after so many years of stagnation in this department.

Repercussions and ramifications

It is not like only we, traders and investors alike, see these trends. Governments are also taking notice and paying close attention. They can’t remove cryptocurrencies and they can’t help inflating their national currencies. However, they can still crack down massively on this and similar endeavors, trying to nip them in the bud. We don’t know yet what Uncle Sam is going to say but some muslim countries have been quite vocal in this regard.
For example, Egypt has issued a fetva which prohibits bitcoin transactions as being against Sharia, an Islamic religious law. Another mostly Islamic country, Indonesia, has banned the use of cryptocurrencies as a means of payment. Russia, although not Islamic yet, is hellbent on effectively outlawing most cryptocurrency operations despite passing earlier a law on digital assets which is essentially neutral to crypto.
To conclude, we must be aware that once things get serious and governments see that their monetary supremacy is being threatened, that they can no longer play their favorite game of inflation tax, they will leave no stone unturned to prevent mass use of crypto as an alternative means of payment. And cryptocurrency payment cards are hands down one of the best tools available for this use on a down-to-earth level, groceries and whatnot.
Now you know what their target will be.
And don’t forget if you need to exchange your coins StealthEX is here for you. We provide a selection of more than 300 coins and constantly updating the cryptocurrency list so that our customers will find a suitable option. Our service does not require registration and allows you to remain anonymous. Why don’t you check it out? Just go to StealthEX and follow these easy steps:
✔ Choose the pair and the amount for your exchange. For example BTC to ETH.
✔ Press the “Start exchange” button.
✔ Provide the recipient address to which the coins will be transferred.
✔ Move your cryptocurrency for the exchange.
✔ Receive your coins.
Follow us on Medium, Twitter, Facebook, and Reddit to get StealthEX.io updates and the latest news about the crypto world. For all requests message us via [email protected].
The views and opinions expressed here are solely those of the author. Every investment and trading move involves risk. You should conduct your own research when making a decision.
Original article was posted on https://stealthex.io/blog/2020/10/06/cryptocurrency-adoption-a-breakthrough/
submitted by Stealthex_io to StealthEX [link] [comments]

Instant Crypto Exchange Flyp.me Adds USD Coin (USDC) Stablecoin Cryptocurrency

We've done it again and added another major addition to our already stacked digital asset offerings! USD Coin (USDC), a Coinbase-developed stablecoin with big backing from some of the crypto world’s biggest names, is now tradable on Flyp.me.
This addition gives Flyp.me users a major leg up in the ever-important quest for digital asset liquidity and mobility. Want to send your stablecoin balance between Flyp.me and Coinbase? No problem! How about sending USDC to Binance through Flyp.me? Easy.
Best of all, Flyp.me does not require an account to trade USDC. The process for grabbing some USDC with Flyp.me couldn’t be easier.
At no point do you enter your private keys, or give any information other than your public wallet address. So, what makes the USDC stablecoin special compared to other stable cryptocurrencies out there like Tether (USDT)? Here is a quick overview of USDC stablecoin and why this one is truly a game-changer for current and future Flyp.me traders.
USDC — Not Your Average Stablecoin
Of all the brand names in the cryptocurrency industry, few are as well known — or completely trusted — as Coinbase is. Yes, Coinbase is one of Flyp.me’s direct competitors, but you know what? Credit goes where credit is due.
Coinbase partnered with Circle to bring about USD Coin, 1:1 USD-backed cryptocurrency that stays true to its $1 = 1 USDC value. How does that work? Essentially, Coinbase keeps $1 in the bank for every 1 USDC in circulation, tying each coin to real — not imaginary or inflated — financial value.
Sure, there are other stablecoins out there, but few of them are audited, and even fewer come with the guarantee that only a big name like Coinbase can provide. USDC provides some welcome relief by being, well, stable.
USDC Stablecoin Is Powered by Ethereum
Another major plus USDC has going is it’s powered by Ethereum, our favorite decentralized ledger for all things DeFi (decentralized finance). As the undisputed hub of the emerging DeFi economy, Ethereum has nearly $1 billion in value locked into the blockchain.
Being Ethereum-based makes the ERC-20 standard USDC coin easily transferable between you and other crypto users, or from your wallet to exchanges. This ease of transfer is especially handy when you need to make a move quickly — unlike the Bitcoin blockchain, Ethereum tends to be quicker.
If you’re ready to trade some USDC cryptocurrency without the hassle of creating an account, then head over to Flyp.me and get started now!
About Flyp.me
Flyp.me is the professional tool for instant crypto trading. There is no registration necessary and no hidden analytics tracking you. Moreover, Flyp.me does not control users' funds, so your private keys are not at risk of being held on third-party services.
Flyp.me currently supports over 30 cryptocurrencies and is continuing to add more: Bitcoin, Ethereum, Zcash, Augur, Litecoin, Syscoin, Pivx, Blackcoin, Dash, Decred, Dogecoin, Flyp.me Token, Gamecredits, Peercoin, Aidcoin, 0x, Vertcoin, Basic Attention Token, BLOCKv, Groestlcoin, Essentia, DAI, DGD, Power Ledger, Enjincoin, TrueUSD, Cardano, Storj, Monero, Maker, TetherUS, DigiByte, and now USD Coin.
Connect with the community on Telegram, Twitter, and Facebook.
submitted by flypme to flypme [link] [comments]

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?
Overledger is the world’s first blockchain operating system (OS) that not only inter-connects blockchains but also existing enterprise platforms, applications and networks to blockchain and facilitates the creation of internet scale multi-chain applications otherwise known as mApps.
In less than 10 months since launching Overledger they have provided interoperability with the full range of DLT technologies from all the leading Enterprise Permissioned blockchains such as Hyperledger, R3’s Corda, JP Morgan’s Quorum, permissioned variants of Ethereum and Ripple (XRPL) as well as the leading Public Permissionless blockchains / DAGs such as Bitcoin, Stellar, Ethereum, IOTA and EOS as well as the most recent blockchain to get added Binance Chain. In addition, Overledger also connects to Existing Networks / Off Chain / Oracle functionality and it does all of this in a way that is hugely scalable, without imposing restrictions / requiring blockchains to fork their code and can easily integrate into existing applications / networks by just adding 3 lines of code.

https://preview.redd.it/3t3z6hkbxel31.png?width=1920&format=png&auto=webp&s=ac989c2752c726e10d2291eb271721ceaa332a30

What is a blockchain Operating system?

You will be familiar with Operating systems such as Microsoft Windows, Apple Mac OS, Google’s Android etc but these are all Hardware based Operating Systems. Hardware based Operating Systems provide a platform to build and use applications that abstracts all of the complexities involved with integrating with all the hardware resources such as CPU, Memory, Storage, Mouse, Keyboard, Video etc so software can easily integrate with it. It provides interoperability between the Hardware devices and Software.
Overledger is a Blockchain Operating System, it provides a platform to build and use applications that abstracts all of the complexities involved with integrating with all the different blockchains, different OP_Codes being used, messaging formats etc as well as connecting to existing non-blockchain networks. It provides interoperability between Blockchains, Existing Networks and Software / MAPPs

How is Overledger different to other interoperability projects?

Other projects are trying to achieve interoperability by adding another blockchain on top of existing blockchains. This adds a lot of overhead, complexity, and technical risk. There are a few variants but essentially they either need to create custom connectors for each connected blockchain and / or require connected chains to fork their code to enable interoperability. An example of the process can be seen below:
User sends transaction to a multi sig contract on Blockchain A, wait for consensus to be reached on Blockchain A
A custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the smart contract on Blockchain A. Once they see the transaction, they then sign a transaction on the Interoperability blockchain as proof the event has happened on Blockchain A.
Wait for consensus to be reached on the Interoperability Blockchain.
The DAPP running on the Interoperability Blockchain is then updated with the info about the transaction occurring on Blockchain A and then signs a transaction on the Interoperability blockchain to a multi sig contract on the Interoperability Blockchain.
Wait for consensus to be reached on the interoperability Blockchain.
A different custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the Smart Contract on the Interoperability Blockchain which are destined for Blockchain B. Once they see the transaction, they sign a transaction on Blockchain B. Wait for consensus to be reached on Blockchain B.

https://preview.redd.it/xew1eu1exel31.png?width=1558&format=png&auto=webp&s=df960ded46d40fc9bf0ae8b54ff3b3b86276708a
Other solutions require every connecting blockchain to fork their code and implement their Interoperability protocol. This means the same type of connector can be used instead of a custom one for every blockchain however every connected blockchain has to fork their code to implement the protocol. This enforces a lot of restrictions on what the connected blockchains can implement going forward.

https://preview.redd.it/pe166qyexel31.png?width=1561&format=png&auto=webp&s=d4c982089276e64cd909537c9ce744b59e168b6d
Some problems with these methods:
  • They add a lot of Overhead / Latency. Rather than just having the consensus of Blockchain A and B, you add the consensus mechanism of the Interoperability Blockchain as well.
  • Decentralisation / transaction security is reduced. If Blockchain A and Blockchain B each have 1,000 nodes validating transactions, yet the Interoperability Blockchain only has 100 nodes then you have reduced the security of the transaction from being validated by 1000 to validated by 100.
  • Security of the Interoperability Blockchain must be greater than the sum of all transactions going through it. JP Morgan transfer $6 Trillion every day, if they move that onto blockchain and need interoperability between two Permissioned blockchains that have to connect via a public Interoperability blockchain, then it would always have to be more costly to attack the blockchain than the value from stealing the funds transacted through the blockchain.
  • Imposes a lot of limitations on connected blockchains to fork their code which may mean they have to drop some existing functionality as well as prevent them from adding certain features in the future.
  • Creates a single point of failure — If the Interoperability blockchain or connector has an issue then this affects each connected blockchain.
  • It doesn’t scale and acts as a bottleneck. Not only does building complex custom connectors not scale but the Interoperability blockchain that they are forcing all transactions to go through has to be faster than the combined throughput of connected blockchains. These Interoperability blockchains have limited tps, with the most being around 200 and is a trade off between performance and decentralisation.

But some Interoperability blockchains say they are infinitely scalable?

If the interoperability blockchain is limited to say 200 tps then the idea is to just have multiple instances of the blockchain and run them in parallel, so you benefit from the aggregated tps, but just how feasible is that? Lets say you want to connect Corda (capable of 2000+ tps) to Hyperledger (capable of up to 20,000 tps with recent upgrade). (Permissioned blockchains such as Hyperledger and Corda aren’t one big blockchain like say Bitcoin or Ethereum, they have separate instances for each consortium and each is capable of those speeds). So even when you have just 1 DAPP from one consortium that wants to connect Corda to Hyperledger and use 2000 tps for their DAPP, you would need 100 instances of the Interoperability blockchain, each with their own validators (which maybe 100–200 nodes each). So, 1 DAPP would need to cover the costs for 100 instances of the blockchain and running costs for 10,000 nodes…This is just one DAPP connected to one instance of a two permissioned blockchains, which are still in the early stages. Other blockchains such as Red Belly Blockchain can achieve 440,000 tps, and this will surely increase as the technology matures. There is also the added complexity of then aggregating the results / co-coordinating between the different instances of the blockchain. Then there are the environmental concerns, the power required for all of these instances / nodes is not sustainable.

https://preview.redd.it/yz2wvnhgxel31.png?width=1070&format=png&auto=webp&s=e6cb66e362b18e9924245a6a99e0eac4c9083308
It’s not just transactions per second of the blockchain as well, its the latency of all these added consensuses along the path to reach to the destination and not knowing whether the security of each of the hops is sufficient and can be trusted. To see examples of how this potential issue as well as others effect Cosmos you can see my article here. I recommend also reading a blog done by the CEO of Quant, Gilbert Verdian, which explains how Overledger differs here as well as detailed in the whitepaper here.

https://preview.redd.it/2cwj4k7hxel31.png?width=1169&format=png&auto=webp&s=d6fc49086f944089cef7ffa1dfc9d284107ad2e3

Overledger’s approach

In 1973 Vint Cerf invented the protocol that rules them all: TCP/IP. Most people have never heard of it. But it describes the fundamental architecture of the internet, and it made possible Wi-Fi, Ethernet, LANs, the World Wide Web, e-mail, FTP, 3G/4G — as well as all of the inventions built upon those inventions.
Wired: So from the beginning, people, including yourself, had a vision of where the internet was going to go. Are you surprised, though, that at this point the IP protocol seems to beat almost anything it comes up against?Cerf: I’m not surprised at all because we designed it to do that.This was very conscious. Something we did right at the very beginning, when we were writing the specifications, we wanted to make this a future-proof protocol. And so the tactic that we used to achieve that was to say that the protocol did not know how — the packets of the internet protocol layer didn’t know how they were being carried. And they didn’t care whether it was a satellite link or mobile radio link or an optical fiber or something else.We were very, very careful to isolate that protocol layer from any detailed knowledge of how it was being carried. Plainly, the software had to know how to inject it into a radio link, or inject it into an optical fiber, or inject it into a satellite connection. But the basic protocol didn’t know how that worked.And the other thing that we did was to make sure that the network didn’t know what the packets had in them. We didn’t encrypt them to prevent it from knowing — we just didn’t make it have to know anything. It’s just a bag of bits as far as the net was concerned.We were very successful in these two design features, because every time a new kind of communications technology came along, like frame relay or asynchronous transfer mode or passive optical networking or mobile radio‚ all of these different ways of communicating could carry internet packets.We would hear people saying, ‘The internet will be replaced by X25,’ or ‘The internet will be replaced by frame relay,’ or ‘The internet will be replaced by APM,’ or ‘The internet will be replaced by add-and-drop multiplexers.’Of course, the answer is, ‘No, it won’t.’ It just runs on top of everything. And that was by design. I’m actually very proud of the fact that we thought of that and carefully designed that capability into the system.
This is the approach Quant have taken with their Blockchain OS, Overledger to solve Blockchain interoperability. Compared to other Interoperability platforms that are trying to achieve interoperability at the transaction layer by connecting two blockchains via another blockchain, these will be ultimately be made redundant once faster methods are released. Overledger is designed to be future proof by isolating the layers so it doesn’t matter whether it’s a permissioned blockchain, permissionless, DAG, Legacy network, POW, POS etc because it abstracts the transaction layer from the messaging layer and runs on top of blockchains. Just as the Internet wasn’t replaced by X25, frame relay, APM etc, Overledger is designed to be future proof as it just runs on top of the Blockchains rather than being a blockchain itself. So, if a new blockchain technology comes out that is capable of 100,000 TPS then it can easily be integrated as Overledger just runs on top of it.
Likewise, with protocols such as HTTPS, SSH etc these will also emerge for blockchains such as ZK-Snarks and other privacy implementations as well as other features made available, all will be compatible with Overledger as its just sitting on top rather than forcing their own implementation for all.
It doesn’t require blockchains to fork their code to make it compatible, it doesn’t add the overhead of adding another blockchain with another consensus mechanism (most likely multiple as it has to go through many hops). All of this adds a lot of latency and restrictions which isn’t needed. The developer can just choose which blockchains they want to connect and use the consensus mechanisms of those blockchains rather than forced to use one.
Overledger can provide truly internet scale to meet whatever the demands may be, whether that be connecting multiple red belly blockchains together with 440,000 tps it doesn’t matter as it doesn’t add its consensus mechanism and uses proven internet scale technology such as that based on Kubernetes, which is where each task is split up into a self-contained container and each task is scaled out by deploying more to meet demand. Kubernetes is what runs Google Search engine where they scale up and down billions of containers every week.
Due to this being more of a summary, I strongly recommend you read this article which goes into detail about the different layers in Overledger.

https://preview.redd.it/1lpt98cixel31.png?width=1126&format=png&auto=webp&s=3928cf66cfe25bfce7dc84be7b6db670ac952ccf

But how does it provide the security of a blockchain if it doesn’t add its own blockchain?

This is often misunderstood by people. Overledger is not a blockchain however it still uses a blockchain for security, immutability, traceability etc, just rather than force people to use their own blockchain, it utilises the source and destination blockchains instead. The key thing to understand is the use of its patented technology TrustTag, which was made freely available to anyone with the Overledger SDK.
Please see this article which explains TrustTag in detail with examples showing how hashing / digital signatures work etc
A quick overview is if i want to send data from one blockchain to another the Overledger SDK using Trusttag will put the data through a hashing algorithm. The Hash is then included in digital signature as part of the transaction which is signed by the user’s private key and then validated through normal consensus and stored as metadata on the source blockchain. The message is then sent to the MAPP off chain. The MAPP periodically scans the blockchains and puts the received message through a hashing algorithm and compares the Hash to the one stored as metadata on the blockchain. This ensures that the message hasn’t been modified in transit, the message is encrypted and only the Hash is stored on chain so completely private, provides immutability as it was signed by the user’s private key which only they have and is stored on the blockchain for high availability and secure so that it can’t be modified, with the ability to refer back to it at any point in time.
Despite Overledger being a very secure platform, with the team having a very strong security background such as Gilbert who was chief security information officer for Vocalink (Bank of England) managing £6 trillion of payments every year and classified as national critical security (highest level you can get), ultimately you don’t need to trust Overledger. Transactions are signed and encrypted at client side, so Overledger has no way of being able to see the contents. It can’t modify any transaction as the digital signature which includes a hash of the transaction would be different so would get rejected. Transaction security isn’t reduced as it is signed at source using however many nodes the source blockchain has rather than a smaller amount of nodes with an interoperability blockchain in the middle.

Patents

The core code of Overledger is closed source and patented, one of the recent patents can be seen here, along with TrustTag and further ones are being filed. The Overledger SDK is open source and is available in Java and Javascript currently, with plans to support Pyhton and Ruby in the near future. Java and Javascript are the most popular programming languages used today.
The Blockchain connectors are also open source and this allows the community to create connectors to connect their favourite blockchain so that it can benefit from blockchain interoperability and making it available to all enterprises / developers currently utilising Overledger. Creating is currently taking around a week to implement and so far, have been added based upon client demand.

Multi Chain Applications (MAPPs)

Multi Chain Applications (MAPPs) enable an application to use multiple blockchains and interoperate between them. Treaty Contracts enable a developer to build a MAPP and then change the underlying blockchain it uses with just a quick change of couple of lines of code. This is vital for enterprises as it’s still early days in Blockchian and we don’t know which are going to be the best blockchain in the future. Overledger easily integrates into existing applications using the Overledger SDK by just adding 3 lines of code. They don’t need to completely rewrite the application like you do with the majority of other projects and all existing java / javascript apps on Windows / Mobile app stores / business applications etc can easily integrate with overledger with minimal changes in just 8 minutes.

Treaty Contracts

What Overledger will allow with Treaty contracts is to use popular programming languages such as Java and create a smart contract in Overledger that interacts with all of the connected blockchains. Even providing Smart contract functionality to blockchains that don’t support them such as Bitcoin. This means that developers don’t have to create all the smart contracts on each blockchain in all the different programming languages but instead just create them in Overledger using languages such as Java that are widely used today. If they need to use a different blockchain then it can be as easy as changing a line of code rather than having to completely rewrite the smart contracts.
Overledger isn’t a blockchain though, so how can it trusted with the smart contract? A Hash of the smart contract is published on any blockchain the MAPP developer requires and when called the smart contract is run its run through a hashing function to check that it matches the Hash value stored on the blockchain, ensuring that it has not been modified.
By running the Smart contract off chain this also increases Scalability enormously. With a blockchain all nodes have to run the smart contract one after another rather than in parallel. Not only do you get the performance benefit of not having to run the code against every single node but you can also run them in parallel to others executing smart contracts.
You can read more about Treaty Contracts here

The different versions of Overledger

Enterprise version

The current live version is the Enterprise version as that is where most of the adoption is taking place in blockchain due to permissioned blockchains being preferred until permissionless blockchains resolve the scalability, privacy and regulatory issues. Please see this article which goes into more details about Entereprise blockchain / adoption. The Enterprise version connects to permissioned blockchains as well as additional features / support suited for Enterprises.

Community version

The community version is due to be released later this year which will allow developers to benefit from creating MAPPs across permissionless blockchains. Developers can publish their MAPPs on the MAPP Store to create additional revenue streams for developers.

Where does Overledger run from? Is it Centralised?

Overledger can run from anywhere. The community version will have instances across multiple public clouds, Enterprises / developers may prefer to host the infrastructure themselves within a consortium which they can and are doing. For example SIA is the leading private Financial Network provider in Europe, it provides a dedicated high speed network which connects all the major banks, central banks, trading venues etc. SIA host Overledger within their private network so that all of those clients can access it in the confinement of their heavily regulated, secure, fast network. AUCloud / UKCLoud host Overledger in their environment to offer as a service to their clients which consist of Governments and critical national infrastructure.
For Blockchain nodes that interact with Overledger the choice is entirely up to the developer. Each member within a consortium may choose to host a node, some developers may prefer to use 3rd party hosting providers such as Infura, or Quant can also host them if they prefer, its entirely their choice.
Overledger allows for higher levels of decentralisation by storing the output across multiple blockchains so you not only benefit from the decentralisation of one blockchain but the combination of all of them. Ultimately though decentralisation is thrown around too much without many actually understanding what it means. It’s impossible to have complete decentralisation, when you sign a transaction to be added to a blockchain ultimately you still connect through a single ISP, connect through a single router, or the input into a transaction is done through a piece of software etc. What matters to be decentralised is where trust is involved. As i have mentioned before you don’t need to trust the OS, it’s just providing instructions on how to interact with the blockchains, the end user is signing the transactions / encrypting at client side. Nothing can be seen or modified with the OS. Even if somehow the transaction did get modified then it would get rejected when consensus is done as the hash / digital signature won’t match at the destination blockchain. Where the transaction actually gets put onto the blockchain is where decentralisation matters, because thats what needs to be trusted and conensus is reached and Overledger enables this to be written across multiple blockchains at the same time.

The Team

The team are very well connected with a wealth of experience at very senior roles at Global enterprises which I will include a few examples below. Gilbert Verdian the CEO was the Head of security for the payment infrastructure for the Bank of England through his CISO role with Vocalink (Mastercard)managing £6 trillion every year. This is treated by the government as critical national infrastructure which is the highest level of criticallity because its so fundamental to the security of the country. They have experience and know what it takes to run a secure financial infrastructure and meeting requirements of regulators. Gilbert was director for Cybersecurity at PWC, Security for HSBC and Ernst & Young as well as various government roles such as the CISO for the Australian NSW Health, Head of Security at the UK government for Ministry of Justice and HM Treasury in addition to being part of the committee for the European Commission, US Federal Reserve and the Bank of England.
Cecilia Harvey is the Chief Operating Officer, where she was previously a Director at HSBC in Global Banking and Markets and before that Director at Vocalink. Cecilia was also Chief Operating Officer at Citi for Markets and Securities Services Technology as well as working for Barclays, Accenture, IBM and Morgan Stanley.
Vijay Verma is the Overledger platform lead with over 15 years of developer experience in latest technologies like Java, Scala, Blockchain & enterprise technology solutions. Over the course of his career, he has worked for a number of prestigious organisations including J&J, Deutsche, HSBC, BNP Paribas, UBS Banks, HMRC and Network Rail.
Guy Dietrich, the managing director of Rockefeller Capital (manages $19 Billion in assets) has joined the board of Quant Network, and has recently personally attended meetings with the Financial Conduct Authority (FCA) with Gilbert

https://preview.redd.it/1x25xg78efl31.png?width=566&format=png&auto=webp&s=abea981ff40355eed2d0e3be1ca414c5b1b8573c
As well as advisors such as Paolo Tasca, the founder and Executive Director of the Centre for Blockchain Technologies (UCL CBT) at University College Londonfounder and executive director as well as Chris Adelsbach, Managing Director at Techstars, the worldwide network that helps entrepreneurs succeed. Techstars has partners such as Amazon, Barclays, Boeing, Ford, Google, Honda, IBM, Microsoft, PWC, Sony, Target, Total, Verizon, Western Union etc.
Due to client demand they are expanding to the US to setup a similar size office where board members such as Guy Dietrich will be extremely valuable in assisting with the expansion.
https://twitter.com/gverdian/status/1151549142235340800
The most exciting part about the project though is just how much adoption there has been of the platform, from huge global enterprises, governments and cloud providers they are on track for a revenue of $10 million in their first year. I will go through these in the next article, followed by further article explaining how the Token and Treasury works.
You can also find out more info about Quant at the following:
Part One — Blockchain Fundamentals
Part Two — The Layers Of Overledger
Part Three — TrustTag and the Tokenisation of data
Part Four — Features Overledger provides to MAPPs
Part Five — Creating the Standards for Interoperability
Part Six — The Team behind Overledger and Partners
Part Seven — The QNT Token
Part Eight — Enabling Enterprise Mass Adoption
Quant Network Enabling Mass Adoption of Blockchain at a Rapid Pace
Quant Network Partner with SIA, A Game Changer for Mass Blockchain Adoption by Financial Institutions
submitted by xSeq22x to QuantNetwork [link] [comments]

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?
Overledger is the world’s first blockchain operating system (OS) that not only inter-connects blockchains but also existing enterprise platforms, applications and networks to blockchain and facilitates the creation of internet scale multi-chain applications otherwise known as mApps.
In less than 10 months since launching Overledger they have provided interoperability with the full range of DLT technologies from all the leading Enterprise Permissioned blockchains such as Hyperledger, R3’s Corda, JP Morgan’s Quorum, permissioned variants of Ethereum and Ripple (XRPL) as well as the leading Public Permissionless blockchains / DAGs such as Bitcoin, Stellar, Ethereum, IOTA and EOS as well as the most recent blockchain to get added Binance Chain. In addition, Overledger also connects to Existing Networks / Off Chain / Oracle functionality and it does all of this in a way that is hugely scalable, without imposing restrictions / requiring blockchains to fork their code and can easily integrate into existing applications / networks by just adding 3 lines of code.

https://preview.redd.it/30jclqe3wel31.png?width=1920&format=png&auto=webp&s=2bcce5d296c3a287dccdd28b72877ca9e03a5f31

What is a blockchain Operating system?

You will be familiar with Operating systems such as Microsoft Windows, Apple Mac OS, Google’s Android etc but these are all Hardware based Operating Systems. Hardware based Operating Systems provide a platform to build and use applications that abstracts all of the complexities involved with integrating with all the hardware resources such as CPU, Memory, Storage, Mouse, Keyboard, Video etc so software can easily integrate with it. It provides interoperability between the Hardware devices and Software.
Overledger is a Blockchain Operating System, it provides a platform to build and use applications that abstracts all of the complexities involved with integrating with all the different blockchains, different OP_Codes being used, messaging formats etc as well as connecting to existing non-blockchain networks. It provides interoperability between Blockchains, Existing Networks and Software / MAPPs

How is Overledger different to other interoperability projects?

Other projects are trying to achieve interoperability by adding another blockchain on top of existing blockchains. This adds a lot of overhead, complexity, and technical risk. There are a few variants but essentially they either need to create custom connectors for each connected blockchain and / or require connected chains to fork their code to enable interoperability. An example of the process can be seen below:
User sends transaction to a multi sig contract on Blockchain A, wait for consensus to be reached on Blockchain A
A custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the smart contract on Blockchain A. Once they see the transaction, they then sign a transaction on the Interoperability blockchain as proof the event has happened on Blockchain A.
Wait for consensus to be reached on the Interoperability Blockchain.
The DAPP running on the Interoperability Blockchain is then updated with the info about the transaction occurring on Blockchain A and then signs a transaction on the Interoperability blockchain to a multi sig contract on the Interoperability Blockchain.
Wait for consensus to be reached on the interoperability Blockchain.
A different custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the Smart Contract on the Interoperability Blockchain which are destined for Blockchain B. Once they see the transaction, they sign a transaction on Blockchain B. Wait for consensus to be reached on Blockchain B.
https://preview.redd.it/2apm3pb5wel31.png?width=1558&format=png&auto=webp&s=7027514706d7b12690b1be8f4f4af7cfc9c43354
Other solutions require every connecting blockchain to fork their code and implement their Interoperability protocol. This means the same type of connector can be used instead of a custom one for every blockchain however every connected blockchain has to fork their code to implement the protocol. This enforces a lot of restrictions on what the connected blockchains can implement going forward.

https://preview.redd.it/4axzxx57wel31.png?width=1561&format=png&auto=webp&s=a8c3de8468ef9b67bc1db75cffbef81ef8c0aa70
Some problems with these methods:
  • They add a lot of Overhead / Latency. Rather than just having the consensus of Blockchain A and B, you add the consensus mechanism of the Interoperability Blockchain as well.
  • Decentralisation / transaction security is reduced. If Blockchain A and Blockchain B each have 1,000 nodes validating transactions, yet the Interoperability Blockchain only has 100 nodes then you have reduced the security of the transaction from being validated by 1000 to validated by 100.
  • Security of the Interoperability Blockchain must be greater than the sum of all transactions going through it. JP Morgan transfer $6 Trillion every day, if they move that onto blockchain and need interoperability between two Permissioned blockchains that have to connect via a public Interoperability blockchain, then it would always have to be more costly to attack the blockchain than the value from stealing the funds transacted through the blockchain.
  • Imposes a lot of limitations on connected blockchains to fork their code which may mean they have to drop some existing functionality as well as prevent them from adding certain features in the future.
  • Creates a single point of failure — If the Interoperability blockchain or connector has an issue then this affects each connected blockchain.
  • It doesn’t scale and acts as a bottleneck. Not only does building complex custom connectors not scale but the Interoperability blockchain that they are forcing all transactions to go through has to be faster than the combined throughput of connected blockchains. These Interoperability blockchains have limited tps, with the most being around 200 and is a trade off between performance and decentralisation.

But some Interoperability blockchains say they are infinitely scalable?

If the interoperability blockchain is limited to say 200 tps then the idea is to just have multiple instances of the blockchain and run them in parallel, so you benefit from the aggregated tps, but just how feasible is that? Lets say you want to connect Corda (capable of 2000+ tps) to Hyperledger (capable of up to 20,000 tps with recent upgrade). (Permissioned blockchains such as Hyperledger and Corda aren’t one big blockchain like say Bitcoin or Ethereum, they have separate instances for each consortium and each is capable of those speeds). So even when you have just 1 DAPP from one consortium that wants to connect Corda to Hyperledger and use 2000 tps for their DAPP, you would need 100 instances of the Interoperability blockchain, each with their own validators (which maybe 100–200 nodes each). So, 1 DAPP would need to cover the costs for 100 instances of the blockchain and running costs for 10,000 nodes…This is just one DAPP connected to one instance of a two permissioned blockchains, which are still in the early stages. Other blockchains such as Red Belly Blockchain can achieve 440,000 tps, and this will surely increase as the technology matures. There is also the added complexity of then aggregating the results / co-coordinating between the different instances of the blockchain. Then there are the environmental concerns, the power required for all of these instances / nodes is not sustainable.

https://preview.redd.it/myjx8t29wel31.png?width=1070&format=png&auto=webp&s=550ac862c3c5b46df8ed42cf37282cad0a960819
It’s not just transactions per second of the blockchain as well, its the latency of all these added consensuses along the path to reach to the destination and not knowing whether the security of each of the hops is sufficient and can be trusted. To see examples of how this potential issue as well as others effect Cosmos you can see my article here. I recommend also reading a blog done by the CEO of Quant, Gilbert Verdian, which explains how Overledger differs here as well as detailed in the whitepaper here.

https://preview.redd.it/m9036lzfwel31.png?width=1169&format=png&auto=webp&s=50e54198a97106b3921f79ca928f7e808a5529d7

Overledger’s approach

In 1973 Vint Cerf invented the protocol that rules them all: TCP/IP. Most people have never heard of it. But it describes the fundamental architecture of the internet, and it made possible Wi-Fi, Ethernet, LANs, the World Wide Web, e-mail, FTP, 3G/4G — as well as all of the inventions built upon those inventions.
***Wired: So from the beginning, people, including yourself, had a vision of where the internet was going to go. Are you surprised, though, that at this point the IP protocol seems to beat almost anything it comes up against?***Cerf: I’m not surprised at all because we designed it to do that.This was very conscious. Something we did right at the very beginning, when we were writing the specifications, we wanted to make this a future-proof protocol. And so the tactic that we used to achieve that was to say that the protocol did not know how — the packets of the internet protocol layer didn’t know how they were being carried. And they didn’t care whether it was a satellite link or mobile radio link or an optical fiber or something else.We were very, very careful to isolate that protocol layer from any detailed knowledge of how it was being carried. Plainly, the software had to know how to inject it into a radio link, or inject it into an optical fiber, or inject it into a satellite connection. But the basic protocol didn’t know how that worked.And the other thing that we did was to make sure that the network didn’t know what the packets had in them. We didn’t encrypt them to prevent it from knowing — we just didn’t make it have to know anything. It’s just a bag of bits as far as the net was concerned.We were very successful in these two design features, because every time a new kind of communications technology came along, like frame relay or asynchronous transfer mode or passive optical networking or mobile radio‚ all of these different ways of communicating could carry internet packets.We would hear people saying, ‘The internet will be replaced by X25,’ or ‘The internet will be replaced by frame relay,’ or ‘The internet will be replaced by APM,’ or ‘The internet will be replaced by add-and-drop multiplexers.’Of course, the answer is, ‘No, it won’t.’ It just runs on top of everything. And that was by design. I’m actually very proud of the fact that we thought of that and carefully designed that capability into the system.
This is the approach Quant have taken with their Blockchain OS, Overledger to solve Blockchain interoperability. Compared to other Interoperability platforms that are trying to achieve interoperability at the transaction layer by connecting two blockchains via another blockchain, these will be ultimately be made redundant once faster methods are released. Overledger is designed to be future proof by isolating the layers so it doesn’t matter whether it’s a permissioned blockchain, permissionless, DAG, Legacy network, POW, POS etc because it abstracts the transaction layer from the messaging layer and runs on top of blockchains. Just as the Internet wasn’t replaced by X25, frame relay, APM etc, Overledger is designed to be future proof as it just runs on top of the Blockchains rather than being a blockchain itself. So, if a new blockchain technology comes out that is capable of 100,000 TPS then it can easily be integrated as Overledger just runs on top of it.
Likewise, with protocols such as HTTPS, SSH etc these will also emerge for blockchains such as ZK-Snarks and other privacy implementations as well as other features made available, all will be compatible with Overledger as its just sitting on top rather than forcing their own implementation for all.
It doesn’t require blockchains to fork their code to make it compatible, it doesn’t add the overhead of adding another blockchain with another consensus mechanism (most likely multiple as it has to go through many hops). All of this adds a lot of latency and restrictions which isn’t needed. The developer can just choose which blockchains they want to connect and use the consensus mechanisms of those blockchains rather than forced to use one.
Overledger can provide truly internet scale to meet whatever the demands may be, whether that be connecting multiple red belly blockchains together with 440,000 tps it doesn’t matter as it doesn’t add its consensus mechanism and uses proven internet scale technology such as that based on Kubernetes, which is where each task is split up into a self-contained container and each task is scaled out by deploying more to meet demand. Kubernetes is what runs Google Search engine where they scale up and down billions of containers every week.
Due to this being more of a summary, I strongly recommend you read this article which goes into detail about the different layers in Overledger.

https://preview.redd.it/6x7tjq9jwel31.png?width=1126&format=png&auto=webp&s=52ac5b9ebb45908ef6070d2eed6d107d380da1df

But how does it provide the security of a blockchain if it doesn’t add its own blockchain?

This is often misunderstood by people. Overledger is not a blockchain however it still uses a blockchain for security, immutability, traceability etc, just rather than force people to use their own blockchain, it utilises the source and destination blockchains instead. The key thing to understand is the use of its patented technology TrustTag, which was made freely available to anyone with the Overledger SDK.
Please see this article which explains TrustTag in detail with examples showing how hashing / digital signatures work etc
A quick overview is if i want to send data from one blockchain to another the Overledger SDK using Trusttag will put the data through a hashing algorithm. The Hash is then included in digital signature as part of the transaction which is signed by the user’s private key and then validated through normal consensus and stored as metadata on the source blockchain. The message is then sent to the MAPP off chain. The MAPP periodically scans the blockchains and puts the received message through a hashing algorithm and compares the Hash to the one stored as metadata on the blockchain. This ensures that the message hasn’t been modified in transit, the message is encrypted and only the Hash is stored on chain so completely private, provides immutability as it was signed by the user’s private key which only they have and is stored on the blockchain for high availability and secure so that it can’t be modified, with the ability to refer back to it at any point in time.
Despite Overledger being a very secure platform, with the team having a very strong security background such as Gilbert who was chief security information officer for Vocalink (Bank of England) managing £6 trillion of payments every year and classified as national critical security (highest level you can get), ultimately you don’t need to trust Overledger. Transactions are signed and encrypted at client side, so Overledger has no way of being able to see the contents. It can’t modify any transaction as the digital signature which includes a hash of the transaction would be different so would get rejected. Transaction security isn’t reduced as it is signed at source using however many nodes the source blockchain has rather than a smaller amount of nodes with an interoperability blockchain in the middle.

Patents

The core code of Overledger is closed source and patented, one of the recent patents can be seen here, along with TrustTag and further ones are being filed. The Overledger SDK is open source and is available in Java and Javascript currently, with plans to support Pyhton and Ruby in the near future. Java and Javascript are the most popular programming languages used today.
The Blockchain connectors are also open source and this allows the community to create connectors to connect their favourite blockchain so that it can benefit from blockchain interoperability and making it available to all enterprises / developers currently utilising Overledger. Creating is currently taking around a week to implement and so far, have been added based upon client demand.

Multi Chain Applications (MAPPs)

Multi Chain Applications (MAPPs) enable an application to use multiple blockchains and interoperate between them. Treaty Contracts enable a developer to build a MAPP and then change the underlying blockchain it uses with just a quick change of couple of lines of code. This is vital for enterprises as it’s still early days in Blockchian and we don’t know which are going to be the best blockchain in the future. Overledger easily integrates into existing applications using the Overledger SDK by just adding 3 lines of code. They don’t need to completely rewrite the application like you do with the majority of other projects and all existing java / javascript apps on Windows / Mobile app stores / business applications etc can easily integrate with overledger with minimal changes in just 8 minutes.

Treaty Contracts

What Overledger will allow with Treaty contracts is to use popular programming languages such as Java and create a smart contract in Overledger that interacts with all of the connected blockchains. Even providing Smart contract functionality to blockchains that don’t support them such as Bitcoin. This means that developers don’t have to create all the smart contracts on each blockchain in all the different programming languages but instead just create them in Overledger using languages such as Java that are widely used today. If they need to use a different blockchain then it can be as easy as changing a line of code rather than having to completely rewrite the smart contracts.
Overledger isn’t a blockchain though, so how can it trusted with the smart contract? A Hash of the smart contract is published on any blockchain the MAPP developer requires and when called the smart contract is run its run through a hashing function to check that it matches the Hash value stored on the blockchain, ensuring that it has not been modified.
By running the Smart contract off chain this also increases Scalability enormously. With a blockchain all nodes have to run the smart contract one after another rather than in parallel. Not only do you get the performance benefit of not having to run the code against every single node but you can also run them in parallel to others executing smart contracts.
You can read more about Treaty Contracts here

The different versions of Overledger

Enterprise version

The current live version is the Enterprise version as that is where most of the adoption is taking place in blockchain due to permissioned blockchains being preferred until permissionless blockchains resolve the scalability, privacy and regulatory issues. Please see this article which goes into more details about Entereprise blockchain / adoption. The Enterprise version connects to permissioned blockchains as well as additional features / support suited for Enterprises.

Community version

The community version is due to be released later this year which will allow developers to benefit from creating MAPPs across permissionless blockchains. Developers can publish their MAPPs on the MAPP Store to create additional revenue streams for developers.

Where does Overledger run from? Is it Centralised?

Overledger can run from anywhere. The community version will have instances across multiple public clouds, Enterprises / developers may prefer to host the infrastructure themselves within a consortium which they can and are doing. For example SIA is the leading private Financial Network provider in Europe, it provides a dedicated high speed network which connects all the major banks, central banks, trading venues etc. SIA host Overledger within their private network so that all of those clients can access it in the confinement of their heavily regulated, secure, fast network. AUCloud / UKCLoud host Overledger in their environment to offer as a service to their clients which consist of Governments and critical national infrastructure.
For Blockchain nodes that interact with Overledger the choice is entirely up to the developer. Each member within a consortium may choose to host a node, some developers may prefer to use 3rd party hosting providers such as Infura, or Quant can also host them if they prefer, its entirely their choice.
Overledger allows for higher levels of decentralisation by storing the output across multiple blockchains so you not only benefit from the decentralisation of one blockchain but the combination of all of them. Ultimately though decentralisation is thrown around too much without many actually understanding what it means. It’s impossible to have complete decentralisation, when you sign a transaction to be added to a blockchain ultimately you still connect through a single ISP, connect through a single router, or the input into a transaction is done through a piece of software etc. What matters to be decentralised is where trust is involved. As i have mentioned before you don’t need to trust the OS, it’s just providing instructions on how to interact with the blockchains, the end user is signing the transactions / encrypting at client side. Nothing can be seen or modified with the OS. Even if somehow the transaction did get modified then it would get rejected when consensus is done as the hash / digital signature won’t match at the destination blockchain. Where the transaction actually gets put onto the blockchain is where decentralisation matters, because thats what needs to be trusted and conensus is reached and Overledger enables this to be written across multiple blockchains at the same time.

The Team

The team are very well connected with a wealth of experience at very senior roles at Global enterprises which I will include a few examples below. Gilbert Verdian the CEO was the Head of security for the payment infrastructure for the Bank of England through his CISO role with Vocalink (Mastercard)managing £6 trillion every year. This is treated by the government as critical national infrastructure which is the highest level of criticallity because its so fundamental to the security of the country. They have experience and know what it takes to run a secure financial infrastructure and meeting requirements of regulators. Gilbert was director for Cybersecurity at PWC, Security for HSBC and Ernst & Young as well as various government roles such as the CISO for the Australian NSW Health, Head of Security at the UK government for Ministry of Justice and HM Treasury in addition to being part of the committee for the European Commission, US Federal Reserve and the Bank of England.
Cecilia Harvey is the Chief Operating Officer, where she was previously a Director at HSBC in Global Banking and Markets and before that Director at Vocalink. Cecilia was also Chief Operating Officer at Citi for Markets and Securities Services Technology as well as working for Barclays, Accenture, IBM and Morgan Stanley.
Vijay Verma is the Overledger platform lead with over 15 years of developer experience in latest technologies like Java, Scala, Blockchain & enterprise technology solutions. Over the course of his career, he has worked for a number of prestigious organisations including J&J, Deutsche, HSBC, BNP Paribas, UBS Banks, HMRC and Network Rail.
Guy Dietrich, the managing director of Rockefeller Capital (manages $19 Billion in assets) has joined the board of Quant Network, and has recently personally attended meetings with the Financial Conduct Authority (FCA) with Gilbert

https://preview.redd.it/wj5ubgv4efl31.png?width=566&format=png&auto=webp&s=2c0cb650f6aceae3d133beefdac04ba0aeea63f6
As well as advisors such as Paolo Tasca, the founder and Executive Director of the Centre for Blockchain Technologies (UCL CBT) at University College Londonfounder and executive director as well as Chris Adelsbach, Managing Director at Techstars, the worldwide network that helps entrepreneurs succeed. Techstars has partners such as Amazon, Barclays, Boeing, Ford, Google, Honda, IBM, Microsoft, PWC, Sony, Target, Total, Verizon, Western Union etc.
Due to client demand they are expanding to the US to setup a similar size office where board members such as Guy Dietrich will be extremely valuable in assisting with the expansion.
https://preview.redd.it/7zlrragqffl31.png?width=578&format=png&auto=webp&s=36980e86da6d050f086eb2171f679ac1716f97dc
The most exciting part about the project though is just how much adoption there has been of the platform, from huge global enterprises, governments and cloud providers they are on track for a revenue of $10 million in their first year. I will go through these in the next article, followed by further article explaining how the Token and Treasury works.
You can also find out more info about Quant at the following:
Part One — Blockchain Fundamentals
Part Two — The Layers Of Overledger
Part Three — TrustTag and the Tokenisation of data
Part Four — Features Overledger provides to MAPPs
Part Five — Creating the Standards for Interoperability
Part Six — The Team behind Overledger and Partners
Part Seven — The QNT Token
Part Eight — Enabling Enterprise Mass Adoption
Quant Network Enabling Mass Adoption of Blockchain at a Rapid Pace
Quant Network Partner with SIA, A Game Changer for Mass Blockchain Adoption by Financial Institutions
submitted by xSeq22x to CryptoCurrency [link] [comments]

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?

Won't let me post the related images here, but please refer to this article which includes them https://medium.com/@CryptoSeq/what-is-a-blockchain-operating-system-and-what-are-the-benefits-c561d8275de6
Overledger is the world’s first blockchain operating system (OS) that not only inter-connects blockchains but also existing enterprise platforms, applications and networks to blockchain and facilitates the creation of internet scale multi-chain applications otherwise known as mApps.
In less than 10 months since launching Overledger they have provided interoperability with the full range of DLT technologies from all the leading Enterprise Permissioned blockchains such as Hyperledger, R3’s Corda, JP Morgan’s Quorum, permissioned variants of Ethereum and Ripple (XRPL) as well as the leading Public Permissionless blockchains / DAGs such as Bitcoin, Stellar, Ethereum, IOTA and EOS as well as the most recent blockchain to get added Binance Chain. In addition, Overledger also connects to Existing Networks / Off Chain / Oracle functionality and it does all of this in a way that is hugely scalable, without imposing restrictions / requiring blockchains to fork their code and can easily integrate into existing applications / networks by just adding 3 lines of code.

What is a blockchain Operating system?

You will be familiar with Operating systems such as Microsoft Windows, Apple Mac OS, Google’s Android etc but these are all Hardware based Operating Systems. Hardware based Operating Systems provide a platform to build and use applications that abstracts all of the complexities involved with integrating with all the hardware resources such as CPU, Memory, Storage, Mouse, Keyboard, Video etc so software can easily integrate with it. It provides interoperability between the Hardware devices and Software.
Overledger is a Blockchain Operating System, it provides a platform to build and use applications that abstracts all of the complexities involved with integrating with all the different blockchains, different OP_Codes being used, messaging formats etc as well as connecting to existing non-blockchain networks. It provides interoperability between Blockchains, Existing Networks and Software / MAPPs

How is Overledger different to other interoperability projects?

Other projects are trying to achieve interoperability by adding another blockchain on top of existing blockchains. This adds a lot of overhead, complexity, and technical risk. There are a few variants but essentially they either need to create custom connectors for each connected blockchain and / or require connected chains to fork their code to enable interoperability. An example of the process can be seen below:
User sends transaction to a multi sig contract on Blockchain A, wait for consensus to be reached on Blockchain A
A custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the smart contract on Blockchain A. Once they see the transaction, they then sign a transaction on the Interoperability blockchain as proof the event has happened on Blockchain A.
Wait for consensus to be reached on the Interoperability Blockchain.
The DAPP running on the Interoperability Blockchain is then updated with the info about the transaction occurring on Blockchain A and then signs a transaction on the Interoperability blockchain to a multi sig contract on the Interoperability Blockchain.
Wait for consensus to be reached on the interoperability Blockchain.
A different custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the Smart Contract on the Interoperability Blockchain which are destined for Blockchain B. Once they see the transaction, they sign a transaction on Blockchain B. Wait for consensus to be reached on Blockchain B.

Other solutions require every connecting blockchain to fork their code and implement their Interoperability protocol. This means the same type of connector can be used instead of a custom one for every blockchain however every connected blockchain has to fork their code to implement the protocol. This enforces a lot of restrictions on what the connected blockchains can implement going forward.
Some problems with these methods:

But some Interoperability blockchains say they are infinitely scalable?

If the interoperability blockchain is limited to say 200 tps then the idea is to just have multiple instances of the blockchain and run them in parallel, so you benefit from the aggregated tps, but just how feasible is that? Lets say you want to connect Corda (capable of 2000+ tps) to Hyperledger (capable of up to 20,000 tps with recent upgrade). (Permissioned blockchains such as Hyperledger and Corda aren’t one big blockchain like say Bitcoin or Ethereum, they have separate instances for each consortium and each is capable of those speeds). So even when you have just 1 DAPP from one consortium that wants to connect Corda to Hyperledger and use 2000 tps for their DAPP, you would need 100 instances of the Interoperability blockchain, each with their own validators (which maybe 100–200 nodes each). So, 1 DAPP would need to cover the costs for 100 instances of the blockchain and running costs for 10,000 nodes…This is just one DAPP connected to one instance of a two permissioned blockchains, which are still in the early stages. Other blockchains such as Red Belly Blockchain can achieve 440,000 tps, and this will surely increase as the technology matures. There is also the added complexity of then aggregating the results / co-coordinating between the different instances of the blockchain. Then there are the environmental concerns, the power required for all of these instances / nodes is not sustainable.
It’s not just transactions per second of the blockchain as well, its the latency of all these added consensuses along the path to reach to the destination and not knowing whether the security of each of the hops is sufficient and can be trusted. To see examples of how this potential issue as well as others effect Cosmos you can see my article here. I recommend also reading a blog done by the CEO of Quant, Gilbert Verdian, which explains how Overledger differs here as well as detailed in the whitepaper here.

Overledger’s approach

In 1973 Vint Cerf invented the protocol that rules them all: TCP/IP. Most people have never heard of it. But it describes the fundamental architecture of the internet, and it made possible Wi-Fi, Ethernet, LANs, the World Wide Web, e-mail, FTP, 3G/4G — as well as all of the inventions built upon those inventions.
Wired: So from the beginning, people, including yourself, had a vision of where the internet was going to go. Are you surprised, though, that at this point the IP protocol seems to beat almost anything it comes up against? Cerf: I’m not surprised at all because we designed it to do that. This was very conscious. Something we did right at the very beginning, when we were writing the specifications, we wanted to make this a future-proof protocol. And so the tactic that we used to achieve that was to say that the protocol did not know how — the packets of the internet protocol layer didn’t know how they were being carried. And they didn’t care whether it was a satellite link or mobile radio link or an optical fiber or something else. We were very, very careful to isolate that protocol layer from any detailed knowledge of how it was being carried. Plainly, the software had to know how to inject it into a radio link, or inject it into an optical fiber, or inject it into a satellite connection. But the basic protocol didn’t know how that worked. And the other thing that we did was to make sure that the network didn’t know what the packets had in them. We didn’t encrypt them to prevent it from knowing — we just didn’t make it have to know anything. It’s just a bag of bits as far as the net was concerned. We were very successful in these two design features, because every time a new kind of communications technology came along, like frame relay or asynchronous transfer mode or passive optical networking or mobile radio‚ all of these different ways of communicating could carry internet packets. We would hear people saying, ‘The internet will be replaced by X25,’ or ‘The internet will be replaced by frame relay,’ or ‘The internet will be replaced by APM,’ or ‘The internet will be replaced by add-and-drop multiplexers.’ Of course, the answer is, ‘No, it won’t.’ It just runs on top of everything. And that was by design. I’m actually very proud of the fact that we thought of that and carefully designed that capability into the system.
This is the approach Quant have taken with their Blockchain OS, Overledger to solve Blockchain interoperability. Compared to other Interoperability platforms that are trying to achieve interoperability at the transaction layer by connecting two blockchains via another blockchain, these will be ultimately be made redundant once faster methods are released. Overledger is designed to be future proof by isolating the layers so it doesn’t matter whether it’s a permissioned blockchain, permissionless, DAG, Legacy network, POW, POS etc because it abstracts the transaction layer from the messaging layer and runs on top of blockchains. Just as the Internet wasn’t replaced by X25, frame relay, APM etc, Overledger is designed to be future proof as it just runs on top of the Blockchains rather than being a blockchain itself. So, if a new blockchain technology comes out that is capable of 100,000 TPS then it can easily be integrated as Overledger just runs on top of it.
Likewise, with protocols such as HTTPS, SSH etc these will also emerge for blockchains such as ZK-Snarks and other privacy implementations as well as other features made available, all will be compatible with Overledger as its just sitting on top rather than forcing their own implementation for all.
It doesn’t require blockchains to fork their code to make it compatible, it doesn’t add the overhead of adding another blockchain with another consensus mechanism (most likely multiple as it has to go through many hops). All of this adds a lot of latency and restrictions which isn’t needed. The developer can just choose which blockchains they want to connect and use the consensus mechanisms of those blockchains rather than forced to use one.
Overledger can provide truly internet scale to meet whatever the demands may be, whether that be connecting multiple red belly blockchains together with 440,000 tps it doesn’t matter as it doesn’t add its consensus mechanism and uses proven internet scale technology such as that based on Kubernetes, which is where each task is split up into a self-contained container and each task is scaled out by deploying more to meet demand. Kubernetes is what runs Google Search engine where they scale up and down billions of containers every week.
Due to this being more of a summary, I strongly recommend you read this article which goes into detail about the different layers in Overledger.

But how does it provide the security of a blockchain if it doesn’t add its own blockchain?

This is often misunderstood by people. Overledger is not a blockchain however it still uses a blockchain for security, immutability, traceability etc, just rather than force people to use their own blockchain, it utilises the source and destination blockchains instead. The key thing to understand is the use of its patented technology TrustTag, which was made freely available to anyone with the Overledger SDK.
Please see this article which explains TrustTag in detail with examples showing how hashing / digital signatures work etc
A quick overview is if i want to send data from one blockchain to another the Overledger SDK using Trusttag will put the data through a hashing algorithm. The Hash is then included in digital signature as part of the transaction which is signed by the user’s private key and then validated through normal consensus and stored as metadata on the source blockchain. The message is then sent to the MAPP off chain. The MAPP periodically scans the blockchains and puts the received message through a hashing algorithm and compares the Hash to the one stored as metadata on the blockchain. This ensures that the message hasn’t been modified in transit, the message is encrypted and only the Hash is stored on chain so completely private, provides immutability as it was signed by the user’s private key which only they have and is stored on the blockchain for high availability and secure so that it can’t be modified, with the ability to refer back to it at any point in time.
Despite Overledger being a very secure platform, with the team having a very strong security background such as Gilbert who was chief security information officer for Vocalink (Bank of England) managing £6 trillion of payments every year and classified as national critical security (highest level you can get), ultimately you don’t need to trust Overledger. Transactions are signed and encrypted at client side, so Overledger has no way of being able to see the contents. It can’t modify any transaction as the digital signature which includes a hash of the transaction would be different so would get rejected. Transaction security isn’t reduced as it is signed at source using however many nodes the source blockchain has rather than a smaller amount of nodes with an interoperability blockchain in the middle.

Patents

The core code of Overledger is closed source and patented, one of the recent patents can be seen here, along with TrustTag and further ones are being filed. The Overledger SDK is open source and is available in Java and Javascript currently, with plans to support Pyhton and Ruby in the near future. Java and Javascript are the most popular programming languages used today.
The Blockchain connectors are also open source and this allows the community to create connectors to connect their favourite blockchain so that it can benefit from blockchain interoperability and making it available to all enterprises / developers currently utilising Overledger. Creating is currently taking around a week to implement and so far, have been added based upon client demand.

Multi Chain Applications (MAPPs)

Multi Chain Applications (MAPPs) enable an application to use multiple blockchains and interoperate between them. Treaty Contracts enable a developer to build a MAPP and then change the underlying blockchain it uses with just a quick change of couple of lines of code. This is vital for enterprises as it’s still early days in Blockchian and we don’t know which are going to be the best blockchain in the future. Overledger easily integrates into existing applications using the Overledger SDK by just adding 3 lines of code. They don’t need to completely rewrite the application like you do with the majority of other projects and all existing java / javascript apps on Windows / Mobile app stores / business applications etc can easily integrate with overledger with minimal changes in just 8 minutes.

Treaty Contracts

What Overledger will allow with Treaty contracts is to use popular programming languages such as Java and create a smart contract in Overledger that interacts with all of the connected blockchains. Even providing Smart contract functionality to blockchains that don’t support them such as Bitcoin. This means that developers don’t have to create all the smart contracts on each blockchain in all the different programming languages but instead just create them in Overledger using languages such as Java that are widely used today. If they need to use a different blockchain then it can be as easy as changing a line of code rather than having to completely rewrite the smart contracts.
Overledger isn’t a blockchain though, so how can it trusted with the smart contract? A Hash of the smart contract is published on any blockchain the MAPP developer requires and when called the smart contract is run its run through a hashing function to check that it matches the Hash value stored on the blockchain, ensuring that it has not been modified.
By running the Smart contract off chain this also increases Scalability enormously. With a blockchain all nodes have to run the smart contract one after another rather than in parallel. Not only do you get the performance benefit of not having to run the code against every single node but you can also run them in parallel to others executing smart contracts.
You can read more about Treaty Contracts here

The different versions of Overledger

Enterprise version

The current live version is the Enterprise version as that is where most of the adoption is taking place in blockchain due to permissioned blockchains being preferred until permissionless blockchains resolve the scalability, privacy and regulatory issues. Please see this article which goes into more details about Entereprise blockchain / adoption. The Enterprise version connects to permissioned blockchains as well as additional features / support suited for Enterprises.

Community version

The community version is due to be released later this year which will allow developers to benefit from creating MAPPs across permissionless blockchains. Developers can publish their MAPPs on the MAPP Store to create additional revenue streams for developers.

Where does Overledger run from? Is it Centralised?

Overledger can run from anywhere. The community version will have instances across multiple public clouds, Enterprises / developers may prefer to host the infrastructure themselves within a consortium which they can and are doing. For example SIA is the leading private Financial Network provider in Europe, it provides a dedicated high speed network which connects all the major banks, central banks, trading venues etc. SIA host Overledger within their private network so that all of those clients can access it in the confinement of their heavily regulated, secure, fast network. AUCloud / UKCLoud host Overledger in their environment to offer as a service to their clients which consist of Governments and critical national infrastructure.
For Blockchain nodes that interact with Overledger the choice is entirely up to the developer. Each member within a consortium may choose to host a node, some developers may prefer to use 3rd party hosting providers such as Infura, or Quant can also host them if they prefer, its entirely their choice.
Overledger allows for higher levels of decentralisation by storing the output across multiple blockchains so you not only benefit from the decentralisation of one blockchain but the combination of all of them. Ultimately though decentralisation is thrown around too much without many actually understanding what it means. It’s impossible to have complete decentralisation, when you sign a transaction to be added to a blockchain ultimately you still connect through a single ISP, connect through a single router, or the input into a transaction is done through a piece of software etc. What matters to be decentralised is where trust is involved. As i have mentioned before you don’t need to trust the OS, it’s just providing instructions on how to interact with the blockchains, the end user is signing the transactions / encrypting at client side. Nothing can be seen or modified with the OS. Even if somehow the transaction did get modified then it would get rejected when consensus is done as the hash / digital signature won’t match at the destination blockchain. Where the transaction actually gets put onto the blockchain is where decentralisation matters, because thats what needs to be trusted and conensus is reached and Overledger enables this to be written across multiple blockchains at the same time.

The Team

The team are very well connected with a wealth of experience at very senior roles at Global enterprises which I will include a few examples below. Gilbert Verdian the CEO was the Head of security for the payment infrastructure for the Bank of England through his CISO role with Vocalink (Mastercard)managing £6 trillion every year. This is treated by the government as critical national infrastructure which is the highest level of criticallity because its so fundamental to the security of the country. They have experience and know what it takes to run a secure financial infrastructure and meeting requirements of regulators. Gilbert was director for Cybersecurity at PWC, Security for HSBC and Ernst & Young as well as various government roles such as the CISO for the Australian NSW Health, Head of Security at the UK government for Ministry of Justice and HM Treasury in addition to being part of the committee for the European Commission, US Federal Reserve and the Bank of England.
Cecilia Harvey is the Chief Operating Officer, where she was previously a Director at HSBC in Global Banking and Markets and before that Director at Vocalink. Cecilia was also Chief Operating Officer at Citi for Markets and Securities Services Technology as well as working for Barclays, Accenture, IBM and Morgan Stanley.
Vijay Verma is the Overledger platform lead with over 15 years of developer experience in latest technologies like Java, Scala, Blockchain & enterprise technology solutions. Over the course of his career, he has worked for a number of prestigious organisations including J&J, Deutsche, HSBC, BNP Paribas, UBS Banks, HMRC and Network Rail.
Guy Dietrich, the managing director of Rockefeller Capital (manages $19 Billion in assets) has joined the board of Quant Network, and has recently personally attended meetings with the Financial Conduct Authority (FCA) with Gilbert
https://twitter.com/gverdian/status/1168628166644183042
As well as advisors such as Paolo Tasca, the founder and Executive Director of the Centre for Blockchain Technologies (UCL CBT) at University College Londonfounder and executive director as well as Chris Adelsbach, Managing Director at Techstars, the worldwide network that helps entrepreneurs succeed. Techstars has partners such as Amazon, Barclays, Boeing, Ford, Google, Honda, IBM, Microsoft, PWC, Sony, Target, Total, Verizon, Western Union etc.
Due to client demand they are expanding to the US to setup a similar size office where board members such as Guy Dietrich will be extremely valuable in assisting with the expansion.
The most exciting part about the project though is just how much adoption there has been of the platform, from huge global enterprises, governments and cloud providers they are on track for a revenue of $10 million in their first year. I will go through these in the next article, followed by further article explaining how the Token and Treasury works.
You can also find out more info about Quant at the following:
Part One — Blockchain Fundamentals
Part Two — The Layers Of Overledger
Part Three — TrustTag and the Tokenisation of data
Part Four — Features Overledger provides to MAPPs
Part Five — Creating the Standards for Interoperability
Part Six — The Team behind Overledger and Partners
Part Seven — The QNT Token
Part Eight — Enabling Enterprise Mass Adoption
Quant Network Enabling Mass Adoption of Blockchain at a Rapid Pace
Quant Network Partner with SIA, A Game Changer for Mass Blockchain Adoption by Financial Institutions
submitted by xSeq22x to CryptoMoonShots [link] [comments]

How I Made +40% PROFIT Trading Bitcoin In 1 DAY ... Best Secret to turn $500 in crypto into BIGGER money! Binance Exchange Secret Did Binance Make the 'Wright' Move? - BTC $1 Million in 2020? - Bitcoin and Crypto News Binance Buying CoinMarketCap & Why It's Great for Bitcoin Price I’ve Changed My Mind on Binance!! BNB #1 Altcoin!? What makes Bitcoin and other CryptoCurrencies go up in value? Binance CEO Makes Rare Price Prediction—Says This Is When ... Binance LIVЕ: Announcе great 10.ООО Givе Awау BTC - YouTube Bitcoin Can Increase In Value and Reach $40K (Here are 4 Reasons Why) BITCOIN BREAKOUT TODAY!!!  Binance Leverage Trading, Will Compete With Bybit & BitMEX

Fundamentally, bitcoin or cryptocurrencies have not changed. They still work. They are still in limited supply, no one can arbitrarily print more of it. With fiat being printed at a record pace, you decide what will happen, in time. Q: Why did Bitcoin go down then? A: Well, bitcoin is a freely traded asset. The price is determined by the market ... What makes a good store of value? To understand what makes a good store of value, let’s first explore what might make a poor store of value. If we want something to be preserved for long periods of time, it stands to reason that it needs to be durable. Consider food. Apples and bananas have some intrinsic value, as humans require nutrition to ... Central banks around the world are printing money to try to prop up the global economy. But for bitcoin, the world's most popular digital currency, the opposite is happening. In addition, the 50 and 200 weekly moving average also remains at an all-time high, and the on-chain fundamentals we mentioned last week continue to show signs of positivity. It is encouraging that bitcoin has shed the volatility it had become known for and is now increasing in value incrementally. Hazlitt explained the British pound lost a third of its value overnight in 1949. “In the decade from the end of 1952 to the end of 1962, 43 leading currencies depreciated,” the economist ... Real game changer. Bitcoin is just a store of value and as such won’t change the world, Novogratz said last month. Speaking at the ConsenSys Ethereal Summit, he argued that the cryptocurrency acts as a digital gold. Web 3.0 is the real game changer, being a decentralised platform that processes information. “If you really think Bitcoin will ... As Bitcoin has grown in value, Bitcoin mining has become its own industry. Whole warehouses have been set up to mine Bitcoin. This means that new Bitcoin is going to fewer and fewer people. Whole warehouses have been set up to mine Bitcoin. Many traders like Binance because it offers cryptos that can’t be found on other exchanges, such as Bitcoin Gold, IOTA, and Walton Coin. Binance Fees & Limits. Currently, Binance charges an average fee of 0.1% for each transaction made by the user. Those that opt to make payments by using the Binance token can get their trading fee reduced by ... Bitcoin: Free money for everyone? Because of the epic rise of the value of bitcoin at the end of 2017, bitcoin and crypto broke through to the masses. Millions jumped in at the top of the wave… US Senate candidate Cynthia Lummis is pro-bitcoin. She bought her first bitcoin during her time in Congress. Now she calls herself a hodler and sees the cryptocurrency as a viable alternative ...

[index] [20141] [828] [8308] [16623] [8593] [7479] [2844] [17879] [18925] [22408]

How I Made +40% PROFIT Trading Bitcoin In 1 DAY ...

#BINANCE #BITCOIN #BTC Binance СЕО C.Z : In this AMA, We are discussing BTC price and talking about Bitcoin price prediction. Also, we prepared an airdrop of 10.000 BTC to giveaway for our ... #Binance CEO Makes Rare Price Prediction—Says This Is When To Buy #Bitcoin Narrated by The #Cryptocurrency Portal on Wed. Feb. 26th, 2020 We send out daily u... In today's video, we take a look at the binance expected acquisition of coinmarketcap and whether or not this is good for crypto. If you would like to be highlighted on my channel please reach out ... Join Binance Here: https://www.binance.com/en/futures/ref/41297141 👉-10% Discount Code For Binance Futures Referral is → 41297141 👉GET My Technical Analysi... More Bitcoin SV saga. Let's discuss if Binance made the 'Wright' move. Also more good news for the exchanges and Bitcoin. Channel Sponser Datalight.Me - If you're looking to get more insight into ... What makes Bitcoin and other CryptoCurrencies go up in value? Francis Hunt, stock market trader and educator comments. PLEASE LIKE AND SHARE THIS VIDEO SO WE... 09:25 Binance & the Tether Cartel 11:54 Binance is Not Reducing Tether USDT Holdings 13:02 You Can't BS A BS'r: Binance Will Fail 13:48 Stop Using Binance! 14:12 Outro 📺Watch These Videos Again📺 The bitcoin Price currently appears in the ranges between $6,000 and 7,000, after all the fomo and hype settles down. Yet, many investors are now wondering if this indication could be a signal for ... Content contained on or made available through the website is not intended to and does not constitute legal advice or investment advice and no attorney-client relationship is formed. This mean that Binance will compete with BitMEX and Bybit. Also, I'll use technical analysis on the Bitcoin price to make a Bitcoin price prediction. Watch the video to learn more!

#